Managing Crises, Climate Change and Ecological Resilience in Complex Resource Systems

LANCE GUNDERSON* & KATHLEEN D. WHITE**

*EMORY UNIVERSITY ATLANTA GA, USA

**U.S. ARMY CORPS OF ENGINEERS, INSTITUTE FOR WATER RESOURCES WASHINGTON DC USA

CRISIS = ABRUPT CHANGE, INSTABILITY

Tsunami, Japan, March 2011 Hurricane Katrina, August 2005 Exogenous Crises - Variation at larger scales -Need for robust, diverse responses across scales

CRISIS = TURNING POINT

Endogenous Crises

Increased Connections, Accumulation of Capital Increase vulnerability, Shifting controls

Climatic Driven Changes !

CLIMATE DATA- SOUTH FLORIDA

Stationarity ? Increased variation

Climate Change: Increasing Surprises

- Changing long-term (Slow) variables
 - Flood and Drought cycles
 - ★ Evaporation
 - × Rainfall
 - Rising Sea Level
- Increase in Cyclonic frequency and intensity
- Increase in temperate wind variability

ADAPTIVE RESPONSES TO CLIMATE CHANGE

Linear Response

- scale bound
- \circ few variables
- predictable responses

Resilient Response

- Non linear dynamics
- Multiple regimes in socio-ecological systems
- Knowledge of regimes

Transformational Response

- Little or no experience
- No analytic solutions, hard to define issues/problems (Wicked)
- New systems, configurations and interactions

Regime	Alteration	Trigger	New Regime	
1 clear- water lakes	2 phosphorus accumulation in agricultural soil and lake mud	regime shift 3 flooding, warming overexploitation of predators	4 turbid-water lakes	Carl Folke, Steve Carpenter, Brian Walker, Marten Scheffer, Thomas Elmqvist, Lance Gunderson, and C.S Holling. 2004. Regime Shifts, Resilience, And Biodiversity In Ecosystem Management. <i>Annu.</i> <i>Rev. Ecol. Evol. Syst.</i> 35:557–81
coral-dominated reefs	overfishing coastal eutrophication	disease, bleaaching hurricane	algae-dominated reefs	
grasslands	fire prevention	good rains, continuous heavy grazing	shrub-bushland	
grassland	hunting of herbivores	disease	woodland	
kelp forests	functional elimination of apex predators	thermal event storm, disease	sea urchin dominance	
pine forests	microclimate and soil changes, loss of pine regeneration	decreased fire frequency, increased fire intensity	oak forest	
seagrass beds	removal of grazers lack of hurricanes salinity moderation spatial homogenizatio	thermal event n	phytoplankton blooms	
tropical lake with submerged vegetation	nutrient accumulation during dry spells	nutrient release with water table rise	floating-plant dominance	

RESTORATION = REGIME MANAGEMENT

Sand for Beaches **Endangered** species Recreation - fishing, rafting, camping, hiking Power generation Non-native species Cultural history - claims Water allocation & delivery

ADAPTIVE MANAGEMENT EXPERIMENTS

FLOW EXPERIMENTS 1996, 2004, 2008

Sediment, Beaches, Biology?

PREDATION CONTROL 2002- present Trout eating humpback chub

Grand Canyon: Experiments Critical to Social Learning and Restoration

Experiments are costly
Changed understanding
Embedded leadership was
necessary
Forced addressing
alternative hypotheses
No long-term
experimental design

Everglades Restoration 1) Restore historic hydrologic regime 2) Detect and Avoid thresholds- undesired regimes

REGIME MANAGEMENT

■ Is Regime Shift Reversible?

- Do Nothing (Ignore)
- Manage to desirable state
 - Active adaptive management actions, hysteresis
 - Passive adaptive management time during transition
- Is Regime Shift Irreversible?
 - Do Nothing (Ignore)
 - Adapt to new state
 - Foster experiments for adaptation
 - Provide incentives for new solutions

Hydrologic Hierarchy Florida

Panarchy

Rigidity Trap

Maintenance of status quo
Lots of capital/power
Innovation/experimentation stifled
Requires crisis to unlock

Poverty Trap

Maintenance of status quo
Decline in natural capital/structure
Erosion of external inputs
Unable to contain cascading effects

1927 - Mississippi Flood 2005 - Hurricane Katrina

SUGGESTIONS

Navigate Transitions

O Prepare for changeO Develop shared views of alternative futures

• Design flexible processes

Discourses and collaborations, not fixed structures.
Focus on new ideas, solutions

Recognize opportunities

 Variation in climate = opportunities for experimentation

SUGGESTIONS

- Develop Learning Based Institutions
 - \circ Evaluate and monitor outcomes of past interventions
 - Engage across sectors (ecological,economic, social)
 - Epistemic organizations (skunkworks)
- Create incentives for flexibility
 - Develop and maintain a portfolio of projects, waiting for opportunities to open.
 - Stimulate experiments
 - o Actions that are safe to fail for individuals, institutions